Go to 10:50 to see the final conclusion, and it is opposite of what most people would think is the answer. Tho earlier stuff in vid is very explanatory for finding finite rationality numbers and the pathway to understanding his conclusion in more depth. Mathologer, got to love this guy. eh? Or not, depending. I'm not a math person, yet I find myself watching some of his stuff to see what I glean or winnow out from it, what might be useful to my limited math explorations.
Most Irrational Number Is?
Posts
Total:
6
-->
@ebuc
Actually the most educational thing I've seen on this site. Props for having the balls to discuss it here even if it doesn't get any traction.
-->
@K_Michael
Actually the most educational thing I've seen on this site. Props for having the balls to discuss it here even if it doesn't get any traction.
It was just the latest thing I accidentalently came across, as it played after this vid below.
It was the K4 SImple <> K5 more complex vertex thingy that I was less familiar with.
K8 may be maximum for torus, is what he appears to say in the video. I dunno.
Go to 7:50 in this utube link https://www.youtube.com/watch?v=MhLBowZOdIo
And the above came as result of other explorations Ive been doing for few years with explorations for my cosmic space-time torus.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Why 7?
7 phase transition of 3-fold tet through 2-fold hexagon. ......4-5-6-- 6 --6-5-4 wherein each polyhedral side/face/opening is counted in Fullers graphic
Also correcting, that, no number higher than 7 precedes the isolated set of 7's below
There are six, 6's that precede 7 in Pi^3. Three 3's, Three 2's. One 4 and one 5.
Also in Pi^3, 66 { twice } precedes 7 and overall occurs five times.
55 ---see fibonancci 10th 11th position--- precedes 7 on 18th line of text,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
...........3, 4, 6, 12.....6, 10, 15 = 7 axis sets { 4 + 3 }---{ 4-fold-4 + 5-fold-3 }
3rd powering aka XYZ or, as abc in Micho Kaku’s “ Hyper-space “ cube { abc-d }
7 occurs in overall 7th position in both sets of powering, below.
Pi^3 = 31. { 31 left-right-skew primary great circles of 5-fold icosahedron = 62 }
……..…………….………...0062 7
…..…………….....66802998201 7
…..….………………....…..….54 7
…...………………….......631506 7
......10139520222528856588510 7
…….....69414453810380639491 7
……..…………………….......465 7
…..…………...…………......0603 7
…..……………………….......566 7
.....010326028861930301219615 7
…….…..…………....…23366223 7
……..…………….....……520161 7
……..……….………......6523396 7
……..…………….……......…....2 7
...3356139415442538825403366 7
…………………………......……...7
……………………………......…2 7
……………………………........55 7 <<<<<<<<<<<<<<
………………………......6626396 7
……......50285320332468630426 7
..9 ?????????????????????????
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In Pi^4/4 the highest number preceding the isolated 7, is again, a 7. Five 2's. Four 1's. One 4. One 6. One 3. One 0.
Next set is my re-normalization of P^4 { XYZ/abc-d } via, dividing by four.
…..Pi^4 / 4 = 24. { 24 chords of VE, 24 radii of VE = equanimity }
…………………………………........…………..3522 7
…………………………….........……………………2 7
………………………….....585.00.60930911.00.831 7
………………………….........……………………..21 7
…………………………………………….........…..62 7
……………………………………..........……………...7
……………………………….........…8124318964181 7
……………………………….........135542286696484 7
……………………………………..............………492 7
……………………………………..........…..13864206 7
……………………………….........……..………..9904 7
……………………………..........53046680868824813 7
……………………………………............……………...7
………………………………............42293312930961 7
…………………………………...........0432814161042 7
………………………………..............8260203588450 7
……………………………….............90811149321594 7
5128320493833159839246533588943656095299 ????
I
think there may be another another set of seven face axi in
Synergetics,--or another of his books--- of the edge truncated
tetrahedron.
And there is the minimal set of 7 color to map faces that are not adjcent to each other on a torus.
..." For instance, on a torus (a
doughnut-shaped surface), we have the Seven-Color Theorem, along with many
eye-catching ways of proving that seven colors are necessary. Here is a collection of
maps on surfaces that are topological tori, each map having seven countries* all of which touch all of the
others."...
-->
@K_Michael
Bonus lesson. ;)
15 days later
This following is in reference to Bucky Fullers Synergetics
relationship of volume between the Vector Equilibrium
aka the 4-fold cubo-octahedron of 20 tetrahedra, to the VE’s first
contracted phase as the below that is relates specifically the
icoashedron whose volume is 18.51 tetrahedra, in Synergetics.
The 18.51 is extended out to 1000 irrational
places and Ive found those interesting numbers to me and other oddities.
7
Is most unique number { see heptagon only irrational angles out of
first 10 polygons }
00 is in italics stems from my Pi^3 = 31.00 62
7...explorations
55
is in bold { not a Pi^3 reference but a fibonacci reference 0,
1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, 233, 377 }
66 Pi^3{ see above } and Pi^4 minus Pi^3 equals 66.4 my
Cosmic Pi Time
24 ergo equanimity
...1} On 43rd irrational line, we have 24
integers/digits/numbers, and 00, 55 66 and 7 all
occur in this line of 24 digits/integers/numbers. 24 via the Vector
Equilibrium/Cubo{6}-octa{8}hedron represents equanimity.
{43rd..24{ equanimity }
integers on this line35}
….005606604251551546984
7
...2}
on t 44th line of irrationals, there is a eight sets of
duplicity 22, 33, 55, 44, 11, 33, 66, 11 and one
triplet 888
3922141332019095514888544119650680633926366911320296903490
7
….3}
on 9th irrational line there is set of five 9's
……………………………….....…......21021999990349396147413
7
This
latter five
9’s make my antenna
go Bing!/Wow!
18.
………………………..5122958682191611960098992926545319235
7
…………………………………..14269136401526159688601669119
7
…………………………………………………………...6850638983447
…………………………………………………………………….38526
7
…………………………………………………………………………....7
………………………………………………………..84055625334809
7
………………………………………………………………………..205
7
……………………………….11394236555830841049501522913155 7
……………………………………………21021999990349396147413
7
……………………………………………………………………404441
7
…………………………………………………………………………..9
7
………………………………………………………………………3163
7
……………………………………..5012443929214164596239114023
7
…………………………………………………………………………29
7
………………………………………………………………………….....7
……………………………………………………………095600016208
7
…………………………………………………………....388255161535
7
………………………………………………………..343281938441425
7
……………………………………………………………………….......1
7
……………………………………………………480996481367399086
7
……………………………………………………………………………...7
………………………………………………………………………...........7
……………………………………………………………………9028093
7
……………………………………………………………………………...7
……………………………………………………………………....18281
7
………………………………………………………………………….895
7
………………………………………………………………..1650940240
7
……………………………………………………………….…………964
7
…………………………………..1968291888628513646128089916285
7
…………………………………………………………………….......4659
7
………………………………………...623896164132974651533726566 7
……………………………………………………………………………..8
7
…………………………………………………..00849448946011252431
7
……………………………………………………………...898909827884
7
……………………………………………3104165849919489053890990
7
……………………………………………………..492616962954098499
7
……………………………………………………………...344153584180
7
……………………………………………………………………….............7
……………………………b…………………………………………..0613
7
………………………………………………..5320505990195898934448
7
……………………………………………………...462930095640804629
7
………………………………………….………........………………………7
{43rd..24
integers on this line}……............35005606604251551546984
7
3922141332019095514888544119650680633926366911320296903490
7
………………………………………………………………………...86243
7
…………………………………………………………….……………..……7
……………………………………………………………….…0423858608
7
……………………………………………………………………………903
7
……………………………………………………..5420609706664546066 7
……………………………………………………………..65610162430051
7
92089695813
7
425832682498286291909189322612160943202242420717529241144521359436
643114811248952056054193598295250551591114305578934437412
740722724466451761239825539760290514684254836216235810698
669739843203784701711241399111594510295289561427686571337
154906163221983172119998846360928818489816228625976865425
516130630133434160307574478272859
Previously I posted my P^4 minus P^3 and forgot to list the rational 24 in first line, so here that is again.
24.
…………………………………........…………..3522 7
…………………………….........……………………2 7
………………………….....585.00.60930911.00.831 7
………………………….........……………………..21 7
…………………………………………….........…..62 7
……………………………………..........……………...7
……………………………….........…8124318964181 7
……………………………….........135542286696484 7
……………………………………..............………492 7
……………………………………..........…..13864206 7
……………………………….........……..………..9904 7
……………………………..........53046680868824813 7
……………………………………............……………...7
………………………………............42293312930961 7
…………………………………...........0432814161042 7
………………………………..............8260203588450 7
……………………………….............90811149321594 7
5128320493833159839246533588943656095299 ????
-->
@K_Michael
-> @ebucActually the most educational thing I've seen on this site. Props for having the balls to discuss it here even if it doesn't get any traction.
But he didn’t colour the balls. So the four colour theorem cannot be applied.